Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity

نویسندگان

  • Hung-Pang Lee
  • Da-Jun Lin
  • Ming-Long Yeh
چکیده

Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrodeposition of Nano Hydroxyapatite Coating on Biodegradable Mg-Zn Scaffold (TECHNICAL NOTE)

Magnesium has been recently recognized as a biodegradation metal for bone substitute application. In the present work, porous magnesium-zinc scaffolds were prepared by powder metallurgical process and nano hydroxyapatite (HAP) coating on the Mg-3Zn (wt.%) scaffold was prepared by pulse electrodeposition and alkali treatment processes to improve the corrosion resistance of scaffold. The results ...

متن کامل

Modification of Anodized Mg Alloy Surface By Pulse Condition for Biodegradable Material

Magnesium is used implant material potentially for non-toxicity to the human body. Due to the excellent bio-compatibility, Mg alloys is applied to implants avoiding removal second surgery. However, it is found commercial magnesium alloys including aluminum has low corrosion resistance, resulting subcutaneous gas bubbles and consequently the approach as permanent bio-materials. Generally, Alumin...

متن کامل

Corrosion behavior and cytocompatibility of fluoride-incorporated plasma electrolytic oxidation coating on biodegradable AZ31 alloy

Fluoride-incorporated plasma electrolytic oxidation (PEO) coating was fabricated on biodegradable AZ31 alloy. The surface morphologies and phases were investigated by scanning electron microscopy and X-ray diffraction. The effect of fluoride incorporation in coatings on corrosion behaviour was investigated in simulated body fluid and in vitro cytocompatibility of the coatings was also studied b...

متن کامل

Preparation of SiO2/ZrO2 ceramic nanocomposite coating on Aluminum alloys as metallic part of the photovoltaic cells and study its corrosion behavior.

Nowadays due to water shortage, the use of air humidity as the sustainable solution has been considered by cities located in coastal zones; especially in warm and humid climate. However, the use of air humidity also has its own problems such as corrosion of metal parts in photovoltaic cells that used for energy supplying and they are often made of Aluminum alloy. Therefore different methods suc...

متن کامل

Preparation ZrO2 ceramic coating by electrolytic plasma oxidation and study of the effect of monoclinic/tetragonal phases on the corrosion resistance of the coating

In this paper, zirconium oxide ceramics coating (ZrO2) were produced on Zircaloy-4 alloy using plasma electrolytic oxidation (PEO). Sodium silicate and Sodium aluminate based electrolyte was selected in PEO process and the effects of the concentration of Sodium aluminate (0, 2.5, 5, 7.5, and 10 g/L) on the microstructure, phase structure and the behavior of corrosion of formed coatings. In orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017